Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity.

نویسندگان

  • R N Sachdev
  • S M Lu
  • R G Wiley
  • F F Ebner
چکیده

Trimming all but two whiskers in adult rats produces a predictable change in cortical cell-evoked responses characterized by increased responsiveness to the two intact whiskers and decreased responsiveness to the trimmed whiskers. This type of synaptic plasticity in rat somatic sensory cortex, called "whisker pairing plasticity," first appears in cells above and below the layer IV barrels. These are also the cortical layers that receive the densest cholinergic inputs from the nucleus basalis. The present study assesses whether the cholinergic inputs to cortex have a role in regulating whisker pairing plasticity. To do this, cholinergic basal forebrain fibers were eliminated using an immunotoxin specific for these fibers. A monoclonal antibody to the low-affinity nerve growth factor receptor 192 IgG, conjugated to the cytotoxin saporin, was injected into cortex to eliminate cholinergic fibers in the barrel field. The immunotoxin reduces acetylcholine esterase (AChE)-positive fibers in S1 cortex by >90% by 3 wk after injection. Sham-depleted animals in which either saporin alone or saporin unconjugated to 192 IgG is injected into the cortex produces no decrease in AChE-positive fibers in cortex. Sham-depleted animals show the expected plasticity in barrel column neurons. In contrast, no plasticity develops in the ACh-depleted, 7-day whisker-paired animals. These results support the conclusion that the basal forebrain cholinergic projection to cortex is an important facilitator of synaptic plasticity in mature cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmentation of plasticity of the central auditory system by the basal forebrain and/or somatosensory cortex.

Auditory conditioning (associative learning) or focal electric stimulation of the primary auditory cortex (AC) evokes reorganization (plasticity) of the cochleotopic (frequency) map of the inferior colliculus (IC) as well as that of the AC. The reorganization results from shifts in the best frequencies (BFs) and frequency-tuning curves of single neurons. Since the importance of the cholinergic ...

متن کامل

Basal forebrain cholinergic system is involved in rapid nerve growth factor (NGF)-induced plasticity in the barrel cortex of adult rats.

We have previously reported that topical application of nerve growth factor (NGF) to the barrel cortex of an adult rat rapidly augmented a whisker functional representation (WFR) by increasing its area and height within minutes after NGF application. In addition, we found that TrkA, the high-affinity NGF receptor, was only found on fibers projecting into the barrel cortex. Here we use a combina...

متن کامل

Basal forebrain projections to somatosensory cortex in the cat.

1. This investigation was designed to identify the source of cholinergic basal forebrain projections to somatosensory cortex in the cat. 2. Injections of horseradish peroxidase (HRP) into cortical areas 3a, 3b, and 1 after a 36 to 48-h survival period, labeled neurons in the basal forebrain. The distribution of retrogradely labeled neurons was compared with the distribution of cells labeled by ...

متن کامل

The Basal Forebrain Cholinergic System Is Essential for Cortical Plasticity and Functional Recovery following Brain Injury

A reorganization of cortical representations is postulated as the basis for functional recovery following many types of nervous system injury. Neuronal mechanisms underlying this form of cortical plasticity are poorly understood. The present study investigated the hypothesis that the basal forebrain cholinergic system plays an essential role in enabling the cortical reorganization required for ...

متن کامل

Local synaptic connections of basal forebrain neurons.

Single, biocytin filled neurons in combination with immunocytochemistry and retrograde tracing as well as material with traditional double-immunolabeling were used at the light and electron microscopic levels to study the neural circuitry within the basal forebrain. Cholinergic neurons projecting to the frontal cortex exhibited extensive local collaterals terminating on non-cholinergic, (possib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 6  شماره 

صفحات  -

تاریخ انتشار 1998